

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN AMS/18/10425

Analog, MEMS & Sensors Group (AMS)

Introduction of a new design for BlueNRG-1 products

WHAT:

Progressing on the activities related to quality continuous improvement, ST is glad to announce a new design for BLUENRG1 family to correct some bugs reported on the product.

Material	Current process	Modified process	Comment
Register Die Id	return 0x111	return 0x113	traceability
BOR operating voltage	down to 2.1V	down to 1.7V	To prevent flash corruption at low voltage
		- Fix on SWD interface.	
		-Minor functional fixes on AUXADC.	
Other modifications		Other minor changes to	
		improve the ST	
		manufacturing FT yield.	
		Modification of datasheet and	
		errata sheet	

WHY:

This change will contribute to improve product functionality and improve robustness.

HOW:

The qualification program consists mainly of comparative electrical characterization. You will find here after the qualification test plan which summarizes the various test methods and conditions that ST uses for this qualification program.

WHEN:

The new design will be implemented in April 2019.

Marking and traceability:

Unless otherwise stated by customer's specific requirement, the traceability of the parts assembled with the new material set will be ensured by new internal sales type, date code and lot number.

The changes here reported will not affect negatively the electrical, dimensional and thermal parameters keeping unchanged all the information reported on the relevant datasheets. There is also no change in the packing process or in the standard delivery quantities.

Shipments may start earlier with the customer's written agreement.

Evaluation Report

Standard Consumer Grade Qualification **F157 BLUENRG-134** F157 BLUENRG-132

General lı	nformation
Product Line	F157
Dreduct Deceription	Bluetooth Low Energy
Product Description	Wireless Processor
P/N	BLUENRG-134
Product Group	AMG
Product division	General purpose analog
Package	VFQFPN 5x5x0.9 32L-
Silicon Process technology	C090LP+flash

Locations							
Wafer fab	TSMC Fab14						
Assembly plant	SUBCO ATP3, UTAC						
	Thai						
Reliability Lab	Grenoble GRAL						
Baliability accomment	Paga						
Reliability assessment	Pass						

PRODUCTS LIST

Product line P/N		Package	Assy Plant		
E457	BLUENRG-134	Wafer level CSP	Subco ATT		
F157	BLUENRG-132	VFQFPN 5x5 32L	UTAC Thai		

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods. This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general

terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	5
2	GLOSSARY	5
	RELIABILITY EVALUATION OVERVIEW	5
	3.1 OBJECTIVES	5
	3.2 CONCLUSION	5
4	DEVICE CHARACTERISTICS	6
	4.1 DEVICE DESCRIPTION	6
	4.2 CONSTRUCTION NOTE	7
5	TESTS RESULTS SUMMARY	
	5.1 TEST VEHICLE	
	5.2 TEST PLAN AND RESULTS SUMMARY	
6	ANNEXES	9
	6.1 DEVICE DETAILS	9

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits
ADCS0061692	Reliability Tests and Criteria for Product Qualification

2 GLOSSARY

DUT	Device Under Test
PCB	Printed Circuit Board
SS	Sample Size

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

3.1 **Objectives**

The Aim of this report is to present characterization trials performed to qualify the design change and remind reliability trials performed on F128 BlueNRG (MSQTR and MSCSP), F174 BlueNRG (232/234) and F157 BlueNRG (132/134) products in order to reach qualification. BlueNRG is a Bluetooth Low Energy Wireless Processor based on ARM Cortex M0 core.

3.2 Conclusion

All trials have been performed with good results on both versions.

F157 BlueNRG-134 and BlueNRG-132 products are qualified.

4 DEVICE CHARACTERISTICS

4.1 Device description

4.2 Construction note

Line:	F128 BLUENRG 1mil	F128 BLUENRG 0.8mil	F128 BLUENRG CSP	F157 BLUENRG-132	F157 BLUENRG-134	F174 BLUENRG- 232	F174 BLUENRG- 234
Comm. Product:	BLUENRGQTR	BLUENRGQTR	BLUENRG CSP	BLUENRG-132	BLUENRG-134	BLUENRG-232	BLUENRG-234
Package Type:	VFQFPN 5.0x5.0x0.9 32L-	VFQFPN 5.0x5.0x0.9 32L-	Wafer level CSP pitch0.4	VFQFPN 5X5X1.0 32L	Wafer level CSP pitch0.4	VFQFPN 5X5X1.0 32L	Wafer level CSP pitch0.4
Die Size:	2600 x 2500 μm	2600 x 2500 μm	2660 x 2560 μm	<mark>2710 x 2580 μm</mark>	<mark>2710 x 2580 μm</mark>	2710 x 2580 μm	2710 x 2580 μm
Diffusion Plant:	TSMC Fab14	TSMC Fab14	TSMC Fab14	TSMC Fab14	TSMC Fab14	TSMC Fab14	TSMC Fab14
Assembly Site:	SUBCO ATP3	SUBCO ATP3	SUBCO ATT1	UTAC Thai	SUBCO ATT1	UTAC Thai	SUBCO ATT1
Test Site:	GRENOBLE	GRENOBLE	GRENOBLE	GRENOBLE	GRENOBLE	GRENOBLE	GRENOBLE
Fab Process:	CMOS90LP+Flash	CMOS90LP+Flash	CMOS90LP+Flash	CMOS90LP+Flash	CMOS90LP+Flash	CMOS90LP+Flash	CMOS90LP+Flash
Passivation:	PSG + NITRIDE	PSG + NITRIDE	PSG + NITRIDE	PSG + NITRIDE	PSG + NITRIDE	PSG + NITRIDE	PSG + NITRIDE
Die backside:	Raw silicon	Raw silicon	Raw silicon	Raw silicon	Raw silicon	Raw silicon	Raw silicon
Die Attach:	Ablestick AMK-6	Ablestick AMK-6	NA	Henkel 8600	NA	Henkel 8600	NA
Mold Compound:	Sumitomo G700	Sumitomo G700	NA	SUMITOMO G700	NA	SUMITOMO G700	NA
Lead Frame:	Copper	Copper	NA	Copper	NA	Copper	NA
Lead Finish:	NiPdAu	NiPdAu	Bump leadfree	<mark>Sn</mark>	Bump leadfree	Sn	Bump leadfree
Package Size and Pitch:	VFQFPN 5.0x5.0x0.9 32L-E p0.5	VFQFPN 5.0x5.0x0.9 32L-E p0.5	Wafer level CSP pitch0.4	VFQFPN 5X5X1.0 32L	Wafer level CSP pitch0.4	VFQFPN 5X5X1.0 32L	Wafer level CSP pitch0.4
Bond Wire:	Gold 1MIL	Gold 0.8MIL	NA	Gold 0.8MIL	NA	Gold 0.8MIL	NA

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot #	Process/ Package	Product Line	Comments
1	QFN32 5x5 1mil	F128	
2	QFN32 5x5 1mil	F128	
3	QFN32 5x5 0.8mil	F128	
4	WLCSP pitch 0.4mm	F128	
5	WLCSP pitch 0.4mm	F128	
6	QFN32 5x5 0.8mil	F157	
7	WLCSP pitch 0.4mm	F174	
8	QFN32 5x5 0.8mil	F174	

Detailed results in below chapter will refer to Lot #.

5.2 Test plan and results summary

Yield verification

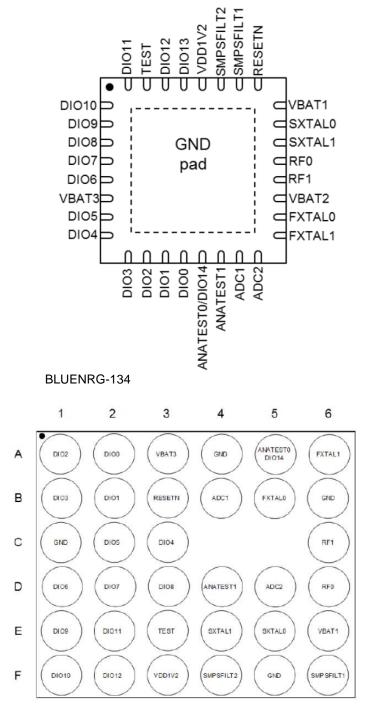
Yield on the new design measured in line with ST standard.

Statistical report

	EWS	Final test	Comment
WLCSP (Cpk>1.33)	100%	99.1%	Conform

Reliability

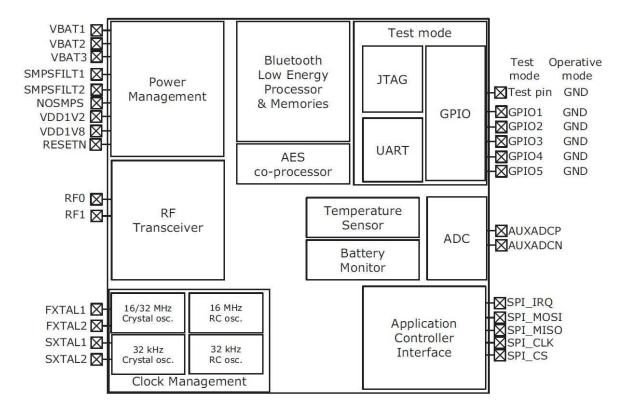
T		011-11	0		0 1111				Fa	ilure/SS				Note
Test	PC	Std ref.	Conditions	SS	Steps	Lot 1	Lot 2	Lot 3	Lot4	Lot5	Lot6	Lot7	Lot8	
Die Orien	nted Tes	sts	-	-	-	-	-		-	-	-	-	-	
		JESD22			168H	0/74	0/78	0/73			0/95			
HTOL	Ν	A-108	Tj = 125°C, BIAS		500H	0/73	0/78	0/73			0/95			
					1000H	0/73	0/78	0/73				-		
HTSL	N	JESD22	Ta = 150°C		168H 500H	0/80	-	-	0/78 0/78	0/78 0/78	-			
HIGL	IN	A-103	1a = 150 C		1000H	0/80	-	-	0/78	0/78	-			
ELFR	Ν	JESD74	Tj = 125°C, BIAS		100011	-	-	0/480	0/239	0/10	-			
		020071	1 - 120 0, 0.10					0/ 100		age Orien	ted Tests		1	
PC	PC JESD22 A-113 PC JESD22 A-113 MSL3: Bake 24H @ 125°C Soak 192H @ Ta=30°C RH=60% Oven Reflow @ Tpeak=260°C 3 times			Final	Pass	-	Pass	Pass	Pass	-				
AC	Y	JESD22	Pa=2Atm / Ta=121°C		96H	-	-	*0/80	*0/79	*0/80	-			*UHAST
		A-102	1 4-25 4117 14-121 0		168H	0/78	-				-			010101
TO	JESD22	T. 0500 I. 15000		100cy	-	-	0/80	0/70	0/76	-				
TC Y	A-104	Ta = -65°C to 150°C		500cy 1000cy	0/78 0/78	-	0/80 0/80	0/70 0/70	0/76 0/76	-				
					168H	0/76	-	-	0/70	0/70	-			
THB	Y	JESD22	Ta = 85°C, RH = 85%, BIAS		500H	0/75	-	-			-			
		A-101			1000H	0/75	-	-			-			
									Other	Tests				
		ADCS 0060102	HBM			±3KV	-	-	Pass	-		2kV	2kV	
ESD	N	(JESD22- A114) ADCS 0060102 (ANSI/ESD STM5.3.1) ADCS	CDM			±1.5KV	-	-	400V			1000V	1000V	
		ADCS 0060102 (JESD22- A115)	ММ			±300V	-	-	160V					
LU	Ν	ADCS 0018695	Current Inj. Overvoltage		±200mA X1.5	Pass	-	-	Pass			Pass	Pass	



6 ANNEXES

6.1 Device details

6.1.1 Pin connection


BUENRG-132

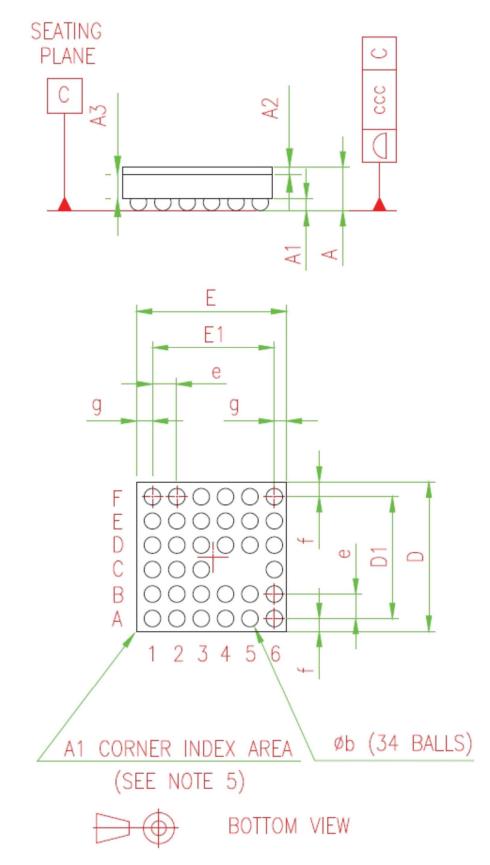
18-Dec-2018

Block diagram

6.1.4 Package outline/Mechanical data

TITLE: WLCSP 2.69x2.56x0.5 34 PITCH 0.4 BALL 0.25

PACKAGE CODE: 01C1 (F157)


JEDEC/EIAJ REFERENCE NUMBER: N/A

	DIMENSIONS						
		DATABOOK (mm)			DRAWING (mm)		
REF.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	NOTES
A		0.50	0.52		0.50	0.52	
A1	0.16	0.175	0.19	0.16	0.175	0.19	
A2		0.022	0.025		0.022	0.025	
A3	0.285	0.30	0.315	0.285	0.30	0.315	
b		0.27			0.27		(2)
D	2.50	2.56	2.58	2.50	2.56	2.58	(3)
D1		2.00			2.00		
E	2.63	2.69	2.71	2.63	2.69	2.71	(4)
E1		2.00			2.00		
e		0.40			0.40		
f		0.28			0.28		
g		0.35			0.35		
CCC			0.05			0.05	

NOTES:

- (1) WLCSP stands for Wafer Level Chip Scale Package.
- (2) The typical ball diameter before mounting is 0.25mm.
- (3) D=f+D1+f.
- (4) E=g+E1+g.
- (5) The terminal A1 corner must be identified on the top surface by using a laser marking dot.

Tests Description

Test name	Description	Purpose
Die Oriented	<u>.</u>	<u>.</u>
HTOL Higt Temperature Operating Life HTB	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide
High Temperature Bias		faults.
HTSL High Temperature Storage Life		To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress- voiding.
ELFR Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in early life.
Package Oriented		
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other		
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM : Charged Device Model HBM : Human Body Model MM : Machine Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up.